Web


Nmap discovered a Web server on the target port 8080 The running service is Apache Tomcat 8.5.5

Webroot It’s a default installation page for Apache Tomcat

Vulnerabilities


I will be using an excellent tools to make a security assessment on the target Tomcat instance

┌──(kali㉿kali)-[~/archive/thm/thompson/ApacheTomcatScanner]
└─$ python3 ApacheTomcatScanner.py -tt $IP --list-cves --show-cves-descriptions
Apache Tomcat Scanner v3.7 - by @podalirius_
 
[+] Targeting 8 ports on 1 hosts.
[+] Searching for Apache Tomcats servers on specified targets ...
[2024/07/12 12h07m57s] Status (7/8) 87.50 % | Rate 0 tests/s        [>] [Apache Tomcat/8.5.5] on 10.10.206.196:8080 (manager: accessible) on http://10.10.206.196:8080/manager/html 
  | Valid user: tomcat | password: s3cret | Default account in configuration, with roles="tomcat"
  | CVE-2016-8735: Remote code execution is possible with Apache Tomcat before 6.0.48, 7.x before 7.0.73, 8.x before 8.0.39, 8.5.x before 8.5.7, and 9.x before 9.0.0.M12 if JmxRemoteLifecycleListener is used and an attacker can reach JMX ports. The issue exists because this listener wasn't updated for consistency with the CVE-2016-3427 Oracle patch that affected credential types.
  | CVE-2017-5651: In Apache Tomcat 9.0.0.M1 to 9.0.0.M18 and 8.5.0 to 8.5.12, the refactoring of the HTTP connectors introduced a regression in the send file processing. If the send file processing completed quickly, it was possible for the Processor to be added to the processor cache twice. This could result in the same Processor being used for multiple requests which in turn could lead to unexpected errors and/or response mix-up.
  | CVE-2016-6816: The code in Apache Tomcat 9.0.0.M1 to 9.0.0.M11, 8.5.0 to 8.5.6, 8.0.0.RC1 to 8.0.38, 7.0.0 to 7.0.72, and 6.0.0 to 6.0.47 that parsed the HTTP request line permitted invalid characters. This could be exploited, in conjunction with a proxy that also permitted the invalid characters but with a different interpretation, to inject data into the HTTP response. By manipulating the HTTP response the attacker could poison a web-cache, perform an XSS attack and/or obtain sensitive information from requests other then their own.
  | CVE-2017-12617: When running Apache Tomcat versions 9.0.0.M1 to 9.0.0, 8.5.0 to 8.5.22, 8.0.0.RC1 to 8.0.46 and 7.0.0 to 7.0.81 with HTTP PUTs enabled (e.g. via setting the readonly initialisation parameter of the Default servlet to false) it was possible to upload a JSP file to the server via a specially crafted request. This JSP could then be requested and any code it contained would be executed by the server.
  | CVE-2017-5648: While investigating bug 60718, it was noticed that some calls to application listeners in Apache Tomcat 9.0.0.M1 to 9.0.0.M17, 8.5.0 to 8.5.11, 8.0.0.RC1 to 8.0.41, and 7.0.0 to 7.0.75 did not use the appropriate facade object. When running an untrusted application under a SecurityManager, it was therefore possible for that untrusted application to retain a reference to the request or response object and thereby access and/or modify information associated with another web application.
  | CVE-2016-6817: The HTTP/2 header parser in Apache Tomcat 9.0.0.M1 to 9.0.0.M11 and 8.5.0 to 8.5.6 entered an infinite loop if a header was received that was larger than the available buffer. This made a denial of service attack possible.
  | CVE-2016-8745: A bug in the error handling of the send file code for the NIO HTTP connector in Apache Tomcat 9.0.0.M1 to 9.0.0.M13, 8.5.0 to 8.5.8, 8.0.0.RC1 to 8.0.39, 7.0.0 to 7.0.73 and 6.0.16 to 6.0.48 resulted in the current Processor object being added to the Processor cache multiple times. This in turn meant that the same Processor could be used for concurrent requests. Sharing a Processor can result in information leakage between requests including, not not limited to, session ID and the response body. The bug was first noticed in 8.5.x onwards where it appears the refactoring of the Connector code for 8.5.x onwards made it more likely that the bug was observed. Initially it was thought that the 8.5.x refactoring introduced the bug but further investigation has shown that the bug is present in all currently supported Tomcat versions.
  | CVE-2017-7675: The HTTP/2 implementation in Apache Tomcat 9.0.0.M1 to 9.0.0.M21 and 8.5.0 to 8.5.15 bypassed a number of security checks that prevented directory traversal attacks. It was therefore possible to bypass security constraints using a specially crafted URL.
  | CVE-2017-5650: In Apache Tomcat 9.0.0.M1 to 9.0.0.M18 and 8.5.0 to 8.5.12, the handling of an HTTP/2 GOAWAY frame for a connection did not close streams associated with that connection that were currently waiting for a WINDOW_UPDATE before allowing the application to write more data. These waiting streams each consumed a thread. A malicious client could therefore construct a series of HTTP/2 requests that would consume all available processing threads.
  | CVE-2017-5664: The error page mechanism of the Java Servlet Specification requires that, when an error occurs and an error page is configured for the error that occurred, the original request and response are forwarded to the error page. This means that the request is presented to the error page with the original HTTP method. If the error page is a static file, expected behaviour is to serve content of the file as if processing a GET request, regardless of the actual HTTP method. The Default Servlet in Apache Tomcat 9.0.0.M1 to 9.0.0.M20, 8.5.0 to 8.5.14, 8.0.0.RC1 to 8.0.43 and 7.0.0 to 7.0.77 did not do this. Depending on the original request this could lead to unexpected and undesirable results for static error pages including, if the DefaultServlet is configured to permit writes, the replacement or removal of the custom error page. Notes for other user provided error pages: (1) Unless explicitly coded otherwise, JSPs ignore the HTTP method. JSPs used as error pages must must ensure that they handle any error dispatch as a GET request, regardless of the actual method. (2) By default, the response generated by a Servlet does depend on the HTTP method. Custom Servlets used as error pages must ensure that they handle any error dispatch as a GET request, regardless of the actual method.
  | CVE-2017-5647: A bug in the handling of the pipelined requests in Apache Tomcat 9.0.0.M1 to 9.0.0.M18, 8.5.0 to 8.5.12, 8.0.0.RC1 to 8.0.42, 7.0.0 to 7.0.76, and 6.0.0 to 6.0.52, when send file was used, results in the pipelined request being lost when send file processing of the previous request completed. This could result in responses appearing to be sent for the wrong request. For example, a user agent that sent requests A, B and C could see the correct response for request A, the response for request C for request B and no response for request C.
  | CVE-2017-7674: The CORS Filter in Apache Tomcat 9.0.0.M1 to 9.0.0.M21, 8.5.0 to 8.5.15, 8.0.0.RC1 to 8.0.44 and 7.0.41 to 7.0.78 did not add an HTTP Vary header indicating that the response varies depending on Origin. This permitted client and server side cache poisoning in some circumstances.
  | CVE-2020-13943: If an HTTP/2 client connecting to Apache Tomcat 10.0.0-M1 to 10.0.0-M7, 9.0.0.M1 to 9.0.37 or 8.5.0 to 8.5.57 exceeded the agreed maximum number of concurrent streams for a connection (in violation of the HTTP/2 protocol), it was possible that a subsequent request made on that connection could contain HTTP headers - including HTTP/2 pseudo headers - from a previous request rather than the intended headers. This could lead to users seeing responses for unexpected resources.
  | CVE-2022-25762: If a web application sends a WebSocket message concurrently with the WebSocket connection closing when running on Apache Tomcat 8.5.0 to 8.5.75 or Apache Tomcat 9.0.0.M1 to 9.0.20, it is possible that the application will continue to use the socket after it has been closed. The error handling triggered in this case could cause the a pooled object to be placed in the pool twice. This could result in subsequent connections using the same object concurrently which could result in data being returned to the wrong use and/or other errors. 
  | CVE-2022-42252: If Apache Tomcat 8.5.0 to 8.5.82, 9.0.0-M1 to 9.0.67, 10.0.0-M1 to 10.0.26 or 10.1.0-M1 to 10.1.0 was configured to ignore invalid HTTP headers via setting rejectIllegalHeader to false (the default for 8.5.x only), Tomcat did not reject a request containing an invalid Content-Length header making a request smuggling attack possible if Tomcat was located behind a reverse proxy that also failed to reject the request with the invalid header.
 
[+] All done!

It turns out that the target Tomcat instance uses one of the default credentials; tomcat:s3cret Additionally, there are 14 vulnerabilities identified

Tomcat Web Application Manager


Provided that I am already have access to the Tomcat Web Application Manager, /manager/html, I can go ahead and deploy a WAR file to invoke code execution