SMB


Nmap discovered a Windows Directory server on the ports 139 and 445 of the DEV-DATASCI-JUP(10.10.232.68) host.

┌──(kali㉿kali)-[~/archive/thm/weasel]
└─$ nmap --script smb-vuln* -sV -p139,445 $IP      
Starting Nmap 7.95 ( https://nmap.org ) at 2025-07-06 13:24 CEST
Nmap scan report for 10.10.232.68
Host is up (0.28s latency).
 
PORT    STATE SERVICE       VERSION
139/tcp open  netbios-ssn   Microsoft Windows netbios-ssn
445/tcp open  microsoft-ds?
Service Info: OS: Windows; CPE: cpe:/o:microsoft:windows
 
Host script results:
|_smb-vuln-ms10-054: false
|_smb-vuln-ms10-061: Could not negotiate a connection:SMB: Failed to receive bytes: ERROR
 
Service detection performed. Please report any incorrect results at https://nmap.org/submit/ .
Nmap done: 1 IP address (1 host up) scanned in 27.45 seconds
 
 
┌──(kali㉿kali)-[~/archive/thm/weasel]
└─$ nmap --script smb-enum-shares -sV -p139,445 $IP
Starting Nmap 7.95 ( https://nmap.org ) at 2025-07-06 13:25 CEST
Nmap scan report for 10.10.232.68
Host is up (0.039s latency).
 
PORT    STATE SERVICE       VERSION
139/tcp open  netbios-ssn   Microsoft Windows netbios-ssn
445/tcp open  microsoft-ds?
Service Info: OS: Windows; CPE: cpe:/o:microsoft:windows
 
Service detection performed. Please report any incorrect results at https://nmap.org/submit/ .
Nmap done: 1 IP address (1 host up) scanned in 17.97 seconds

Share mapping failed.

Null Session


┌──(kali㉿kali)-[~/archive/thm/weasel]
└─$ nxc smb $IP -u '' -p '' --shares --interfaces 
SMB         10.10.232.68    445    DEV-DATASCI-JUP  [*] Windows 10 / Server 2019 Build 17763 x64 (name:DEV-DATASCI-JUP) (domain:DEV-DATASCI-JUP) (signing:False) (SMBv1:False)
SMB         10.10.232.68    445    DEV-DATASCI-JUP  [+] DEV-DATASCI-JUP\: 
SMB         10.10.232.68    445    DEV-DATASCI-JUP  [-] Error enumerating shares: STATUS_ACCESS_DENIED
 
 
┌──(kali㉿kali)-[~/archive/thm/weasel]
└─$ nxc smb $IP -u 'blah' -p 'blah' --shares --interfaces 
SMB         10.10.232.68    445    DEV-DATASCI-JUP  [*] Windows 10 / Server 2019 Build 17763 x64 (name:DEV-DATASCI-JUP) (domain:DEV-DATASCI-JUP) (signing:False) (SMBv1:False)
SMB         10.10.232.68    445    DEV-DATASCI-JUP  [+] DEV-DATASCI-JUP\blah:blah (Guest)
SMB         10.10.232.68    445    DEV-DATASCI-JUP  [*] Enumerated shares
SMB         10.10.232.68    445    DEV-DATASCI-JUP  Share           Permissions     Remark
SMB         10.10.232.68    445    DEV-DATASCI-JUP  -----           -----------     ------
SMB         10.10.232.68    445    DEV-DATASCI-JUP  ADMIN$                          Remote Admin
SMB         10.10.232.68    445    DEV-DATASCI-JUP  C$                              Default share
SMB         10.10.232.68    445    DEV-DATASCI-JUP  datasci-team    READ,WRITE      
SMB         10.10.232.68    445    DEV-DATASCI-JUP  IPC$            READ            Remote IPC

While the target SMB server allows both anonymous access and guest accesses, the guess access is able to read both datasci-team and IPC$ shares and write to the datasci-team share. Username enumeration via RID cycling attack is possible.

datasci-team Share


┌──(kali㉿kali)-[~/archive/thm/weasel]
└─$ impacket-smbclient blah@$IP
Impacket v0.13.0.dev0 - Copyright Fortra, LLC and its affiliated companies 
 
Password:
Type help for list of commands
# use datasci-team
# tree
/Long-Tailed_Weasel_Range_-_CWHR_M157_[ds1940].csv
/MPE63-3_745-757.pdf
/requirements.txt
/weasel.ipynb
/weasel.txt
/.ipynb_checkpoints/requirements-checkpoint.txt
/.ipynb_checkpoints/weasel-checkpoint.ipynb
/misc/jupyter-token.txt
/papers/BI002_2613_Cz-40-2_Acta-T34-nr25-347-359_o.pdf
/papers/Dillard_Living_Like_Weasels.pdf
/pics/57475-weasel-facts.html
/pics/long-tailed-weasel
/pics/Weasel
Finished - 12 files and folders

This appears to be a directory for a Python project running on Jupyter notebook.

/Long-Tailed_Weasel_Range_-_CWHR_M157_[ds1940].csv


┌──(kali㉿kali)-[~/archive/thm/weasel/datasci-team]
└─$ cat Long-Tailed_Weasel_Range_-_CWHR_M157_\[ds1940\].csv 
OBJECTID,SName,CName,Season,Shape_Name,Shape__Area,Shape__Length
1,Mustela frenata,LONG-TAILED WEASEL,Y,M157,498403947818.375,8364371.94328192

N/A

/MPE63-3_745-757.pdf


A 64-pages long PDF file containing a research regarding evolution of weasel. N/A

/MPE63-3_745-757.pdf Metadata

┌──(kali㉿kali)-[~/archive/thm/weasel/datasci-team]
└─$ exiftool -a MPE63-3_745-757.pdf
ExifTool Version Number         : 13.25
File Name                       : MPE63-3_745-757.pdf
Directory                       : .
File Size                       : 415 kB
File Modification Date/Time     : 2025:07:06 13:57:02+02:00
File Access Date/Time           : 2025:07:06 13:57:52+02:00
File Inode Change Date/Time     : 2025:07:06 13:57:02+02:00
File Permissions                : -rwxr-xr-x
File Type                       : PDF
File Type Extension             : pdf
MIME Type                       : application/pdf
PDF Version                     : 1.5
Linearized                      : No
Encryption                      : Standard V2.3 (128-bit)
User Access                     : Print, Copy, Extract, Print high-res
Modify Date                     : 2012:06:19 08:09:46+09:00
Create Date                     : 2022:08:11 03:48:16+09:00
Producer                        : iText 4.2.0 by 1T3XT
Author                          : Sato, Jun J.; Wolsan, Mieczyslaw; Prevosti, Francisco J.; D'Elía, Guillermo; Begg, Colleen; Begg, Keith; Hosoda, Tetsuji; Campbell, Kevin L.; Suzuki, Hitoshi
Title                           : Evolutionary and biogeographic history of weasel-like carnivorans (Musteloidea)
Has XFA                         : No
Page Count                      : 64

Possible username disclosure?

/requirements.txt


┌──(kali㉿kali)-[~/archive/thm/weasel/datasci-team]
└─$ cat requirements.txt                                   
pandas
numpy

Python modules used.

/weasel.ipynb


┌──(kali㉿kali)-[~/archive/thm/weasel/datasci-team]
└─$ cat weasel.ipynb          
{
 "cells": [
  {
   "cell_type": "markdown",
   "id": "739487ac-1410-4a5d-afcf-6b9d53e01fe1",
   "metadata": {},
   "source": [
    "# National Conservation Data Science Team\n",
    "## Statistical Investigation into the Mountain Weasel (M. altaica)\n",
    "\n",
    "### About\n",
    "\n",
    "The mountain weasel, also known as the pale weasel, Altai weasel or solongoi, primarily lives in high-altitude environments, as well as rocky tundra and grassy woodlands. This weasel rests in rock crevices, tree trunks, and abandoned burrows of other animals or the animals it previously hunted.\n",
    "\n",
    "Conservation status: Near Threatened (Population decreasing)\n",
    "\n",
    "Gestation period: 40 days\n",
    "\n",
    "Higher classification: Weasel\n",
    "\n",
    "Length: 9.6 in. (Adult)\n",
    "\n",
    "Mass: 6.4 oz (Adult)\n",
    "\n",
    "Rank: Species\n",
    "\n",
    "Scientific name: Mustela altaica"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 16,
   "id": "06bfd6bc-6729-4251-9105-9007a72d4d6c",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "['\\ufeffOBJECTID,SName,CName,Season,Shape_Name,Shape__Area,Shape__Length']\n",
      "['1,Mustela', 'frenata,LONG-TAILED', 'WEASEL,Y,M157,498403947818.375,8364371.94328192']\n"
     ]
    }
   ],
   "source": [
    "import csv\n",
    "with open('Long-Tailed_Weasel_Range_-_CWHR_M157_[ds1940].csv', \"r\") as f:\n",
    "    weaseldata = csv.reader(f, delimiter=\" \")\n",
    "    for row in weaseldata:\n",
    "        print(row)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 11,
   "id": "2f266539-e598-4e32-a498-959bbae3f90f",
   "metadata": {},
   "outputs": [],
   "source": [
    "import pandas as pd\n",
    "import numpy as np\n",
    "\n",
    "# Set data frame\n",
    "\n",
    "data=np.random.randn(1000)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 17,
   "id": "86fe0ce5-4c5c-4886-840f-f89fc76eda09",
   "metadata": {},
   "outputs": [],
   "source": [
    "N=len(data)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 18,
   "id": "85df9b20-72d6-405e-b1e5-96abdf0d3f94",
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "/home/husky/.local/lib/python3.8/site-packages/IPython/lib/pretty.py:778: FutureWarning: Index.ravel returning ndarray is deprecated; in a future version this will return a view on self.\n",
      "  output = repr(obj)\n"
     ]
    },
    {
     "data": {
      "text/plain": [
       "0      0.395236\n",
       "1     -2.076999\n",
       "2     -0.376245\n",
       "3     -1.311725\n",
       "4      1.930204\n",
       "         ...   \n",
       "995    0.850316\n",
       "996   -0.796213\n",
       "997    1.581154\n",
       "998   -0.384427\n",
       "999    0.240693\n",
       "Name: name, Length: 1000, dtype: category\n",
       "Categories (1000, float64): [-2.898068, -2.855261, -2.732101, -2.724120, ..., 2.633050, 2.816518, 3.495429, 3.576344]"
      ]
     },
     "execution_count": 18,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "df=pd.DataFrame(\n",
    "    {\"name\":data,\n",
    "     \"num\":np.arange(N),\n",
    "     \"score\":np.random.randint(40,100,\n",
    "                               size=N),\n",
    "     \"weight\":np.random.uniform(50,70,\n",
    "                                size=N)},\n",
    "    columns=[\"num\",\"name\",\"score\",\"weight\"])\n",
    "\n",
    "df[\"name\"]=df[\"name\"].astype(\"category\")\n",
    "df.name"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "4bd57cad-6cc1-423d-9780-e5fdcf6891fa",
   "metadata": {},
   "source": [
    "# TODO\n",
    "- Source data\n",
    "- Compare weasel lengths / girths by year"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.8.10"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}

N/A

/weasel.txt


┌──(kali㉿kali)-[~/archive/thm/weasel/datasci-team]
└─$ cat weasel.txt  
https://www.nature.com/articles/s41598-018-26057-5

Pointing to a research paper.

/.ipynb_checkpoints/requirements-checkpoint.txt


┌──(kali㉿kali)-[~/archive/thm/weasel/datasci-team]
└─$ cat .ipynb_checkpoints/requirements-checkpoint.txt 
pandas
numpy

Same as the /requirements.txt file above.

/.ipynb_checkpoints/weasel-checkpoint.ipynb


┌──(kali㉿kali)-[~/archive/thm/weasel/datasci-team]
└─$ cat .ipynb_checkpoints/weasel-checkpoint.ipynb    
{
 "cells": [
  {
   "cell_type": "markdown",
   "id": "739487ac-1410-4a5d-afcf-6b9d53e01fe1",
   "metadata": {},
   "source": [
    "# National Conservation Data Science Team\n",
    "## Statistical Investigation into the Mountain Weasel (M. altaica)\n",
    "\n",
    "### About\n",
    "\n",
    "The mountain weasel, also known as the pale weasel, Altai weasel or solongoi, primarily lives in high-altitude environments, as well as rocky tundra and grassy woodlands. This weasel rests in rock crevices, tree trunks, and abandoned burrows of other animals or the animals it previously hunted.\n",
    "\n",
    "Conservation status: Near Threatened (Population decreasing)\n",
    "\n",
    "Gestation period: 40 days\n",
    "\n",
    "Higher classification: Weasel\n",
    "\n",
    "Length: 9.6 in. (Adult)\n",
    "\n",
    "Mass: 6.4 oz (Adult)\n",
    "\n",
    "Rank: Species\n",
    "\n",
    "Scientific name: Mustela altaica"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "id": "06bfd6bc-6729-4251-9105-9007a72d4d6c",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "['\\ufeffOBJECTID,SName,CName,Season,Shape_Name,Shape__Area,Shape__Length']\n",
      "['1,Mustela', 'frenata,LONG-TAILED', 'WEASEL,Y,M157,498403947818.375,8364371.94328192']\n"
     ]
    }
   ],
   "source": [
    "import csv\n",
    "with open('Long-Tailed_Weasel_Range_-_CWHR_M157_[ds1940].csv', \"r\") as f:\n",
    "    weaseldata = csv.reader(f, delimiter=\" \")\n",
    "    for row in weaseldata:\n",
    "        print(row)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 9,
   "id": "2f266539-e598-4e32-a498-959bbae3f90f",
   "metadata": {},
   "outputs": [
    {
     "ename": "NameError",
     "evalue": "name 'N' is not defined",
     "output_type": "error",
     "traceback": [
      "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
      "\u001b[0;31mNameError\u001b[0m                                 Traceback (most recent call last)",
      "Input \u001b[0;32mIn [9]\u001b[0m, in \u001b[0;36m<cell line: 6>\u001b[0;34m()\u001b[0m\n\u001b[1;32m      2\u001b[0m \u001b[38;5;28;01mimport\u001b[39;00m \u001b[38;5;21;01mnumpy\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m \u001b[38;5;21;01mnp\u001b[39;00m\n\u001b[1;32m      4\u001b[0m data\u001b[38;5;241m=\u001b[39mnp\u001b[38;5;241m.\u001b[39mrandom\u001b[38;5;241m.\u001b[39mrandn(\u001b[38;5;241m1000\u001b[39m)\n\u001b[1;32m      6\u001b[0m df\u001b[38;5;241m=\u001b[39mpd\u001b[38;5;241m.\u001b[39mDataFrame(\n\u001b[1;32m      7\u001b[0m     {\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mname\u001b[39m\u001b[38;5;124m\"\u001b[39m:data,\n\u001b[0;32m----> 8\u001b[0m      \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mnum\u001b[39m\u001b[38;5;124m\"\u001b[39m:np\u001b[38;5;241m.\u001b[39marange(\u001b[43mN\u001b[49m),\n\u001b[1;32m      9\u001b[0m      \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mscore\u001b[39m\u001b[38;5;124m\"\u001b[39m:np\u001b[38;5;241m.\u001b[39mrandom\u001b[38;5;241m.\u001b[39mrandint(\u001b[38;5;241m40\u001b[39m,\u001b[38;5;241m100\u001b[39m,\n\u001b[1;32m     10\u001b[0m                                size\u001b[38;5;241m=\u001b[39mN),\n\u001b[1;32m     11\u001b[0m      \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mweight\u001b[39m\u001b[38;5;124m\"\u001b[39m:np\u001b[38;5;241m.\u001b[39mrandom\u001b[38;5;241m.\u001b[39muniform(\u001b[38;5;241m50\u001b[39m,\u001b[38;5;241m70\u001b[39m,\n\u001b[1;32m     12\u001b[0m                                 size\u001b[38;5;241m=\u001b[39mN)},\n\u001b[1;32m     13\u001b[0m     columns\u001b[38;5;241m=\u001b[39m[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mnum\u001b[39m\u001b[38;5;124m\"\u001b[39m,\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mname\u001b[39m\u001b[38;5;124m\"\u001b[39m,\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mscore\u001b[39m\u001b[38;5;124m\"\u001b[39m,\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mweight\u001b[39m\u001b[38;5;124m\"\u001b[39m])\n\u001b[1;32m     15\u001b[0m df[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mname\u001b[39m\u001b[38;5;124m\"\u001b[39m]\u001b[38;5;241m=\u001b[39mdf[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mname\u001b[39m\u001b[38;5;124m\"\u001b[39m]\u001b[38;5;241m.\u001b[39mastype(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mcategory\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n\u001b[1;32m     16\u001b[0m df\u001b[38;5;241m.\u001b[39mname\n",
      "\u001b[0;31mNameError\u001b[0m: name 'N' is not defined"
     ]
    }
   ],
   "source": [
    "import pandas as pd\n",
    "import numpy as np\n",
    "\n",
    "data=np.random.randn(1000)\n",
    "\n",
    "N=len(data)\n",
    "\n",
    "df=pd.DataFrame(\n",
    "    {\"name\":data,\n",
    "     \"num\":np.arange(N),\n",
    "     \"score\":np.random.randint(40,100,\n",
    "                               size=N),\n",
    "     \"weight\":np.random.uniform(50,70,\n",
    "                                size=N)},\n",
    "    columns=[\"num\",\"name\",\"score\",\"weight\"])\n",
    "\n",
    "df[\"name\"]=df[\"name\"].astype(\"category\")\n",
    "df.name\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "4bd57cad-6cc1-423d-9780-e5fdcf6891fa",
   "metadata": {},
   "source": [
    "# TODO\n",
    "Source data\n",
    "Compare weasel lengths / girths by year"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "85df9b20-72d6-405e-b1e5-96abdf0d3f94",
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.8.10"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5

N/A

/misc/jupyter-token.txt


┌──(kali㉿kali)-[~/archive/thm/weasel/datasci-team]
└─$ cat misc/jupyter-token.txt                    
067470c5ddsadc54153ghfjd817d15b5d5f5341e56b0dsad78a

Authentication token. Can be used to bypass restrictions. A Jupyter Notebook instance was discovered on the target Web server on the port 8888 of the DEV-DATASCI-JUP(10.10.232.68) host. Validating the token.

/papers/BI002_2613_Cz-40-2_Acta-T34-nr25-347-359_o.pdf


Another 13-pages long research paper.

/papers/BI002_2613_Cz-40-2_Acta-T34-nr25-347-359_o.pdf Metadata

┌──(kali㉿kali)-[~/archive/thm/weasel/datasci-team]
└─$ exiftool -a papers/BI002_2613_Cz-40-2_Acta-T34-nr25-347-359_o.pdf
ExifTool Version Number         : 13.25
File Name                       : BI002_2613_Cz-40-2_Acta-T34-nr25-347-359_o.pdf
Directory                       : papers
File Size                       : 3.5 MB
File Modification Date/Time     : 2025:07:06 13:57:04+02:00
File Access Date/Time           : 2025:07:06 14:05:03+02:00
File Inode Change Date/Time     : 2025:07:06 13:57:04+02:00
File Permissions                : -rwxr-xr-x
File Type                       : PDF
File Type Extension             : pdf
MIME Type                       : application/pdf
PDF Version                     : 1.4
Linearized                      : Yes
Producer                        : ABBYY FineReader 10
Create Date                     : 2013:03:05 13:09:25+01:00
Modify Date                     : 2013:03:05 13:09:25+01:00
Page Count                      : 13
Format                          : application/pdf
Producer                        : ABBYY FineReader 10
Create Date                     : 2013:03:05 13:09:25+01:00
Modify Date                     : 2013:03:05 13:09:25+01:00
Document ID                     : uuid:9947AFCC-0A7D-4A6E-821B-5BAA9A1F2599
Part                            : 1
Conformance                     : A
Tagged PDF                      : Yes

N/A

/papers/Dillard_Living_Like_Weasels.pdf


Another 3-pages long research paper.

/papers/Dillard_Living_Like_Weasels.pdf

┌──(kali㉿kali)-[~/archive/thm/weasel/datasci-team]
└─$ exiftool -a papers/Dillard_Living_Like_Weasels.pdf               
ExifTool Version Number         : 13.25
File Name                       : Dillard_Living_Like_Weasels.pdf
Directory                       : papers
File Size                       : 45 kB
File Modification Date/Time     : 2025:07:06 13:57:05+02:00
File Access Date/Time           : 2025:07:06 14:06:17+02:00
File Inode Change Date/Time     : 2025:07:06 13:57:05+02:00
File Permissions                : -rwxr-xr-x
File Type                       : PDF
File Type Extension             : pdf
MIME Type                       : application/pdf
PDF Version                     : 1.3
Linearized                      : No
Page Count                      : 3
Profile CMM Type                : Apple Computer Inc.
Profile Version                 : 2.2.0
Profile Class                   : Display Device Profile
Color Space Data                : RGB
Profile Connection Space        : XYZ
Profile Date Time               : 2002:05:13 12:00:00
Profile File Signature          : acsp
Primary Platform                : Apple Computer Inc.
CMM Flags                       : Not Embedded, Independent
Device Manufacturer             : Apple Computer Inc.
Device Model                    : 
Device Attributes               : Reflective, Glossy, Positive, Color
Rendering Intent                : Perceptual
Connection Space Illuminant     : 0.9642 1 0.82491
Profile Creator                 : Apple Computer Inc.
Profile ID                      : 0
Red Matrix Column               : 0.45427 0.24263 0.01482
Green Matrix Column             : 0.35332 0.67441 0.09042
Blue Matrix Column              : 0.15662 0.08336 0.71953
Media White Point               : 0.95047 1 1.0891
Chromatic Adaptation            : 1.04788 0.02292 -0.0502 0.02957 0.99049 -0.01706 -0.00923 0.01508 0.75165
Red Tone Reproduction Curve     : (Binary data 14 bytes, use -b option to extract)
Green Tone Reproduction Curve   : (Binary data 14 bytes, use -b option to extract)
Blue Tone Reproduction Curve    : (Binary data 14 bytes, use -b option to extract)
Profile Description             : Generic RGB Profile
Profile Copyright               : Copyright 2007 Apple Inc., all rights reserved.
Video Card Gamma                : (Binary data 48 bytes, use -b option to extract)
Native Display Info             : (Binary data 56 bytes, use -b option to extract)
Profile Description ML          : Generic RGB Profile
Profile Description ML (es-ES)  : Perfil RGB Genérico
Profile Description ML (da-DK)  : Generel RGB-beskrivelse
Profile Description ML (de-DE)  : Allgemeines RGB-Profil
Profile Description ML (fi-FI)  : Yleinen RGB-profiili
Profile Description ML (fr-FU)  : Profil Générique RVB
Profile Description ML (it-IT)  : Profilo RGB Generico
Profile Description ML (nl-NL)  : Algemeen RGB-profiel
Profile Description ML (nb-NO)  : Generisk RGB-profil
Profile Description ML (pt-BR)  : Perfil RGB Genérico
Profile Description ML (sv-SE)  : Generisk RGB-profil
Profile Description ML (ja-JP)  : 一般 RGB プロファイル
Profile Description ML (ko-KR)  : 일반 RGB 프로파일
Profile Description ML (zh-TW)  : 通用 RGB 色彩描述
Profile Description ML (zh-CN)  : 普通 RGB 描述文件
Profile Description ML (ru-RU)  : Общий профиль RGB
Profile Description ML (pl-PL)  : Uniwersalny profil RGB
Title                           : Document1
Author                          : Burlee Vang
Subject                         : 
Apple Keywords                  : 
Creator                         : Microsoft Word
Producer                        : Mac OS X 10.5.8 Quartz PDFContext
Create Date                     : 2010:09:19 22:59:16Z
Modify Date                     : 2010:09:19 22:59:16

The file was created using Microsoft Word on a OSX host Mac OS X 10.5.8 Quartz PDFContext was also used.

/pics/57475-weasel-facts.html


┌──(kali㉿kali)-[~/archive/thm/weasel/datasci-team]
└─$ ll pics/57475-weasel-facts.html 
296K -rwxr-xr-x 1 kali kali 294K Jul  6 13:57 pics/57475-weasel-facts.html

Big HTML file

It appears to be a copy of an online article.

/pics/Weasel


┌──(kali㉿kali)-[~/archive/thm/weasel/datasci-team]
└─$ file pics/Weasel ; ll pics/Weasel 
pics/Weasel: HTML document, Unicode text, UTF-8 text, with very long lines (2608)
228K -rwxr-xr-x 1 kali kali 225K Jul  6 13:57 pics/Weasel

Another big HTML file

This appears to be the Wikipedia article about weasel.

pics/long-tailed-weasel


┌──(kali㉿kali)-[~/archive/thm/weasel/datasci-team]
└─$ file pics/long-tailed-weasel ; ll pics/long-tailed-weasel 
pics/long-tailed-weasel: HTML document, Unicode text, UTF-8 text, with very long lines (10251)
248K -rwxr-xr-x 1 kali kali 245K Jul  6 13:57 pics/long-tailed-weasel

Another big HTML file

Copied from an online article.